🔎ÆÀ ¼Ò°³
(ÁÖ)µöÀλçÀÌÆ® ±â¾÷ºÎ¼³¿¬±¸¼Ò´Â ¿îÀüÀÚ¿Í µ¿½ÂÀÚÀÇ ¾ÈÀüÀ» Ã¥ÀÓÁö´Â In-Cabin Monitoring Systems(ICMS)À» °³¹ßÇÕ´Ï´Ù. Á¦ÇÑµÈ È¯°æ¿¡¼ ÃÖ¼±ÀÇ ¼Óµµ¿Í Á¤È®µµ¸¦ °®´Â ÀΰøÁö´É ¾îÇø®ÄÉÀ̼ÇÀ¸·Î ´ÙÀ½ ¼¼´ë ÀÚµ¿Â÷ÀÇ ¾ÈÀü°ú ÆíÀǼºÀ» Çâ»ó½Ãŵ´Ï´Ù.
ICMS´Â ´Ù¾çÇÑ ºñÀü ±â¹ÝÀÇ µö·¯´× ¸ðµ¨·Î ÀÌ·ç¾îÁý´Ï´Ù. ´Ù¾çÇÑ ¸ðµ¨¸¸Å ´Ù¾çÇÑ Á¾·ùÀÇ ÇнÀ µ¥ÀÌÅÍ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼öÁýµÈ µ¥ÀÌÅÍ´Â µ¿ÀÏÇÑ ¸ñÀûÀ¸·Î ±¸ÃàµÇ¾ú´õ¶óµµ ¼·Î ´Ù¸¥ Ư¼ºÀ» °®°í ¶óº§µéÀº ¼·Î ´Ù¸£°Ô Á¤ÀǵǾîÀÖ½À´Ï´Ù. ²ÙÁØÈ÷ Áõ°¡ÇÏ´Â µ¥ÀÌÅͼÂÀ» °¡Àå È¿À²ÀûÀÎ ¹æ¹ýÀ¸·Î Ç¥ÁØÈÇÏ¿© µö·¯´× °³¹ßÀڵ鿡°Ô ÅëÀÏµÈ Á¢±Ù ¹æ¹ýÀ» Á¦°øÇÏ´Â °ÍÀÌ ÇÊ¿äÇÕ´Ï´Ù.
µö·¯´× ¸ðµ¨ °³¹ßÀº ÇнÀ°ú Æò°¡ÀÇ ¹Ýº¹À̸ç, ¸Å¹ø Á¶±Ý¾¿ ´Ù¸¥ Á¶ÇÕÀÇ µ¥ÀÌÅÍ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼ö½Ê~¼ö¹é TBÀÇ Àüü µ¥ÀÌÅÍ Áß¿¡¼ Á¶°Ç¿¡ ¸Â´Â µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ÃßÃâÇÏ¿© È°¿ëÇÒ ¼ö ÀÖ°Ô Áö¿øÇÏ´Â °Í ¶ÇÇÑ µ¥ÀÌÅÍ ¿£Áö´Ï¾îÀÇ ÀÓ¹«ÀÔ´Ï´Ù.
💻¾÷¹«
- ´Ù¾çÇÑ µö·¯´× ÈƷÿ¡ »ç¿ëµÇ´Â µ¥ÀÌÅ͸¦ °ü¸®ÇÕ´Ï´Ù.
- Á߱Ը𠵥ÀÌÅÍ º£À̽º¸¦ ±¸ÃàÇÏ°í ´Ù¾çÇÑ AI °³¹ßÀÚ¿¡°Ô ÅëÇÕµÈ µ¥ÀÌÅÍ Á¢±Ù °æÇèÀ» Áö¿øÇÕ´Ï´Ù.
- ¼öÁýµÈ µ¥ÀÌÅͼÂÀÇ ±âÃÊÀûÀÎ Åë°è ºÐ¼®À» ¼öÇàÇÕ´Ï´Ù.
✔️ÀÚ°Ý¿ä°Ç
1. ÇÐÀ§: °ü·Ã ºÐ¾ß Çлç ÀÌ»ó
2. °æ·Â(¾÷°è°æ·Â): °æ·Â
3. ¿ä±¸ ´É·Â
- ½ºÅ丮Áö, ³×Æ®¿öÅ©ÀÇ ÀÛµ¿ ¿ø¸®¿¡ ´ëÇÑ ÀÌÇØ
- ¸®´ª½º ¼¹ö¸¦ ´É¼÷ÇÏ°Ô ´Ù·ç´Â ´É·Â
- ÇÑ °¡Áö ÀÌ»óÀÇ µ¥ÀÌÅÍ º£À̽º¸¦ ±¸ÃàÇÏ°í ¿î¿ëÇغ» °æÇè
- ÇÑ °¡Áö ÀÌ»óÀÇ µ¥ÀÌÅÍ ½Ã°¢È µµ±¸¸¦ ÀÚÀ¯·Ó°Ô ¾µ ¼ö ÀÖ´Â ´É·Â
- Python °³¹ß ´É·Â
- ÀΰøÁö´É(Computer Vision ºÐ¾ß) °³¹ß °úÁ¤¿¡ ´ëÇÑ ÀÌÇØ
** AWSµî Ŭ¶ó¿ìµå ±â¹ÝÀÇ DB °æÇèÀº Çʼö°¡ ¾Æ´Õ´Ï´Ù**
✨¿ì´ë»çÇ×
- °ü·Ã °æ·Â 3³â ÀÌ»ó, °ü·Ã Àü°ø ¼®»ç ÇÐÀ§ ÀÌ»ó
- µ¥ÀÌÅÍ ½Ã°¢È¸¦ ÅëÇÑ ÀÇ»ç ¼ÒÅë ´É·ÂÀÌ ¶Ù¾î³ »ç¶÷
- ½ºÅ丮Áö ¼¹ö¿Í ³×Æ®¿öÅ© Çϵå¿þ¾î¸¦ ±¸ÃàÇغ» °æÇèÀÌ ÀÖ´Â »ç¶÷
---------------------------------------------------------------------------
🔎Team Information
The Research & Development Division develops in-cabin monitoring systems and Occupant monitoring systems to enhance the safety of drivers and passengers. Our goal is to ship faster and more reliable ML-based applications to the vehicles to come.
ICMS consists of various vision-based deep learning models, which require diverse types of training data. Even if the collected data is built for the same purpose, it has different characteristics and labels are defined differently. It is essential to standardize the steadily growing datasets in the most efficient way to provide a unified approach to deep learning developers.
Deep learning model development involves repeated training and evaluation, with slightly different data combinations needed each time. Another key responsibility of a data engineer is to support the efficient extraction and utilization of data that meets the required conditions from tens to hundreds of terabytes of total data.
💻Responsibilities
- Development of volume measurement solutions based on 3D cameras (or Lidar) in C++ and Python environment
- Designing, developing, and implementing algorithms based on Depth Images (or Point Clouds)
- Testing, Troubleshooting, and Performance Improvements for Sensor Data Processing and Algorithm Solutions
✔️Qualifications
1. Education: Bachelor¡¯s degree or higher in a relevant field
2. Experience (Industry Experience): Relevant experience
3. Required Skills:
- Understanding of the principles of storage and network operations
- Proficiency in handling Linux servers
- Experience in building and managing at least one database
- Ability to use at least one data visualization tool effectively
- Python development skills
- Understanding of AI development processes (particularly in Computer Vision)
- Experience with cloud-based databases such as AWS is not required
✨Preferred Qualifications
- More than 3 years of relevant experience, with a master's degree or higher in a related field.
- Excellent communication skills through data visualization.
- Experience in building storage servers and network hardware.